Daniel Dessau

University of Colorado, Boulder, EPiQS Experimental Investigator

 

Developing novel tools for high-resolution angle-resolved photoelectron spectroscopy and utilizing them to study high-temperature superconductors and topological materials.

Daniel Dessau
 

Research Description

I utilize a variety of spectroscopic tools to study the electronic structure, magnetic structure, and phase transitions of novel material systems, such as high-temperature superconductors, topological insulators, topological superconductors, and colossal magnetoresistive oxides. My group uses synchrotron light sources around the world, and we also have unique angle-resolved photoemission spectroscopy (ARPES) instrumentation in our home lab, including laser-ARPES, and ultrafast pump-probe ARPES.

High-resolution ARPES has proven to be indispensable for the study of quantum materials because it directly reveals the energy and momentum of the electronic states in a solid. We continually work to expand the capabilities of our ARPES measurement and analysis tools. Currently, we are particularly interested in reaching the highest energy resolution and lowest sample temperatures possible. These technical advances would allow investigations of important quantum materials whose interesting physics is presently not accessible to ARPES, including ‘topological’ superconductors that are of special relevance for quantum computation, quantum critical systems, and two-dimensional materials such as twisted bilayer graphene that exhibit many novel and tunable electronic properties at low temperatures.

 
 

related links

Emergent Phenomena in Quantum Systems Science University of Colorado at Boulder, Department of Physics Back

Education

B.A., Physics, Rice University
B.S., Electrical Engineering, Rice University
Ph.D., Applied Physics, Stanford University
DOE Distinguished Postdoctoral Research Fellow, Stanford Synchrotron Radiation Lightsource

Affiliated Investigators