by: Glenn Roberts, Jr.
 

Researchers at Lawrence Berkeley National Laboratory have described a near-perfect “quantum metamaterial”—a material with exotic properties not found in nature—using ultracold atoms trapped in an artificial crystal composed of light.

Using metamaterial theory and principles from a separate project supported by the Moore Foundation, the team proposes the use of an accordion-like atomic framework, or “lattice” structure, made with laser light to trap atoms in regularly spaced nanoscale pockets. Such a light-based structure, which has patterned features that in some ways resemble those of a crystal, is essentially a “perfect” structure—free of the typical defects found in natural materials.

Scientists believe they can pinpoint the placement of a so-called “probe” atom in this crystal of light, and actively tune its behavior with another type of laser light (near-infrared light) to make the atom cough up some of its energy on demand in the form of a particle of light, or photon.

This photon, in turn, can be absorbed by another probe atom (in the same or different lattice site) in a simple form of information exchange—like spoken words traveling between two string-connected tin cans.

This theoretical work represents a step toward manipulating atoms to transmit information, perform complex simulations, or function as powerful sensors.

Read the full article here.

 

Help us spread the word.

If you know someone who is interested in this field or what we are doing at the foundation, pass it along.

Get Involved
 
 

Related Stories