The long-lasting effects of El Niño are projected to cause an intense fire season in the Amazon, according to the 2016 seasonal forecast from Moore Foundation grantees at the University of California, Irvine.
El Niño conditions in 2015 and early 2016 altered rainfall patterns around the world. In the Amazon, El Niño reduced rainfall during the wet season, leaving the region drier at the start of the 2016 dry season than any year since 2002, according to NASA satellite data.
“It’s the driest we’ve seen it at the onset of a fire season, and an important challenge now is to find ways to use this information to limit damages in coming months,” said Jim Randerson, Chancellor’s Professor of Earth system science at UCI.
Randerson developed the forecast methodology with UCI research scientist Yang Chen and colleagues at NASA Goddard Space Flight Center. “Just as El Nino is known to have an impact on precipitation in the western United States, it also affects the Amazon, but in that case it causes drier conditions.”
Wildfire risk for the dry-season months of July, August and September this year now exceeds the danger in 2005 and 2010, drought years when large areas of Amazon rainforest burned, said Doug Morton, NASA Earth scientist.
“Severe drought conditions at the start of the dry season set the stage for extreme fire risk in 2016 across the southern Amazon,” Morton said.
The forecast uses the relationship between climate and active burn detections from NASA satellites to predict fire season severity during the region’s dry season. Developed in 2011, the forecast model is focused particularly on the link between sea surface temperatures and fire activity. Warmer sea surface temperatures in the tropical Pacific (El Niño) and Atlantic oceans shift rainfall away from the Amazon region, increasing the risk of fires during dry season months.
The team also uses data on terrestrial water storage from a joint NASA/German mission to follow changes in groundwater during the dry season. Satellite measurements serve as a proxy for the dryness of soils and forests.
For 2016, El Niño-driven conditions are far drier than 2005 and 2010 – the last years when the region experienced drought. The team has also developed a web tool to track the evolution of the Amazon fire season in near real time. Estimated fire emissions from each forecast region are updated daily, based on the relationship between active detections and fire emissions data from the Global Fire Emissions Database in previous years.
So far, however, the region has seen more fires to date than those years, another indicator that aligns with the fire severity forecast.
Read the full article here.
Message sent
Thank you for sharing.