

Interdisciplinary Science: Opportunities & Obstacles

– Moore Foundation MMI-RAPS Summit – 4 February 2014 –

Michael O'Rourke
Michigan State University
The Toolbox Project

http://www.cals.uidaho.edu/toolbox/

Presentation Outline

- My Role
- The Plan
- What is Interdisciplinarity?
 - What is disciplinarity?
 - *Inter*-disciplinarity
 - Analyzing interdisciplinary research
- Interdisciplinary Science
 - Example: Coastal fog as a system
 - Opportunities
 - Obstacles
 - Interdisciplinary Workshop Goals
- Workshop #1
- Workshop #2

My Role

Guide Reflection on Interdisciplinary Science

- A philosopher by training who has focused on the nature of knowledge and communication
- Worked during the past 10 years on explicitly interdisciplinary projects, including AUVs
- Current research: science of team science, e.g.,
 understanding and facilitating interdisciplinarity
- Here, I have been asked to help break down disciplinary barriers and foster collaboration

The Plan

Structuring Interdisciplinary Reflection

- Presentation on interdisciplinary science (10:45-11:40)
- Complete MMI Toolbox instrument (11:40-12:00)
- Workshop #1: Toolbox workshop today
 - Group dialogue (1:30-2:30)
 - General debrief discussion (2:30-3:00)
- Workshop #2: Impacts workshop tomorrow
 - Group discussion and informal concept mapping exercise (2:30-3:30)
 - General debrief discussion (3:30-4:00)

What is disciplinarity?

- An important unit for thinking about knowledge creation is the *discipline*, but what are disciplines?
- Examples: chemistry, geochemistry, biogeochemistry
- They can be conceived of from the inside:
 - Focused practices (Bammer 2013)
 - Knowledge cultures
 - Forms of life
- The can be conceived of from the outside:
 - Institutions (e.g., departments, societies)
 - Markets (Turner 2000)

What is disciplinarity?

- Think about disciplines as knowledge cultures (Knorr Cetina 1999)
 - These generate understanding by isolating topics of interest and then examining them using various methods
 - Members of knowledge cultures share assumptions about how one should investigate the topics of interest
 - One is acculturated during training and early in one's career
- These cultures produce different languages,
 thoughts, actions i.e., research worldviews

*Inter-*disciplinarity

- If disciplines are knowledge cultures,
 - then *inter*-disciplinarity involves bringing different cultures together
 - As such, it is a form of intellectual multiculturalism
- Further, interdisciplinarity differs from other combinations (e.g., multidisciplinarity) in being more integrated (Klein 2010)
 - Integration can involve common questions, sharing data, combining methods, use of a common model, etc.
 - The result is a research result that is a sum of different disciplinary vectors (Brigandt 2010)

Analyzing Interdisciplinary Research

- Interdisciplinary research (IDR) need not be collaborative, but it generally is in science – we will focus on *collaborative* IDR (Voosen 2013)
- IDR often concerns complex, "real world" problems (e.g., climate change), but can also be motivated by complex questions (e.g., bacterial roles in ocean biogeochemistry) (NAS 2004)
- Two Modes of IDR:
 - Intrinsic mode
 - Extrinsic mode

Analyzing Interdisciplinary Research

- <u>Intrinsic Mode</u>:
 - This concerns the structure and functionality of an interdisciplinary collaboration on the inside
 - There are typically several disciplinary perspectives on the common research question that
 - Emphasize different methods
 - Issue in different hypotheses
 - Generate different interpretations (Eigenbrode et al. 2007)
 - Success will depend on these different perspectives "coming together" in some fashion (Klein 2011)

Analyzing Interdisciplinary Research

- Extrinsic Mode:
 - This concerns the influence and impact that IDR can have on those outside of the collaboration proper
 - Those affected can include:
 - Other scientists outside of the collaboration
 - Funders
 - Policymakers
 - Stakeholders
 - We tend to limit our extrinsic view to our own disciplines
 - The spheres of influence extend much farther out (consider: the NSF "broader impacts" criterion)
 (Frodeman et al. 2013)

Example: Coastal Fog as a System

- IDR takes place all over the map of knowledge, but our interest here is on scientific IDR
- To fix ideas, consider a recent GBMF-funded effort to investigate coastal fog as a system
 - An intentional effort to catalyze interdisciplinary capacity around coastal fog understood as more than just a chemical or physical phenomenon
 - Involves atmospheric physicists and chemists, oceanographers, aquatic and terrestrial ecologists, climatologists, modelers, and eventually social scientists

Example: Coastal Fog as a System

Example: Coastal Fog as a System

Conceptual Model of Integrative Processes

Opportunities

- You are young scientists with a stake in a discipline, so why care about IDR?
- There are valuable opportunities that await if you are willing to expand your sense of what's relevant

- Intrinsic:

- Meet complex problems with complex responses
- Achieve explanatory coherence across a range of knowledge cultures (Thagard 1997)
- Make connections that could result in access to data, models, etc.

Opportunities

- Extrinsic:
 - Funder interest in this kind of work:
 - GBMF: MMI, Data-driven Discovery
 - NSF: National Ecological Observatory Network (NEON), Long-Term Ecological Research (LTER), INSPIRE
 - NOAA: Climate and Societal Interactions (CSI)
 - Enhance the scientific reach of your research
 - Influence policy and help a broader swath of stakeholders (Sarewitz 2013)

Obstacles

 But working across disciplines is challenging, with no shortage of obstacles (Morse et al. 2007)

- Intrinsic:

- Different knowledge cultures operate differently, and there is much that can be lost in translation (Holbrook 2013)
- Collaborators in IDR projects use different technical terms and methods, have different values and priorities, and can take different things to qualify as results
- Further, you are not always an expert in IDR you must be willing to be the student

Obstacles

- Extrinsic:
 - Getting credit for IDR within your unit (NAS 2004)
 - Finding publication venues for IDR results
 - Getting the word out to the various parties (e.g., policymakers) who might have an interest in this work
 - Once those parties are identified, communicating with them effectively

Interdisciplinary Workshop Goals

- In two 90-minute workshops, we'll focus on the obstacles and build on the opportunities
- Workshop #1: The Value of Conceptual Dialogue
 - Focus on the intrinsic obstacles associated with communicating with collaborators
 - Goal: enhance mutual understanding about research perspectives across several disciplines
- Workshop #2: Mapping the Space of Collaboration
 - Focus on the extrinsic obstacles associated with identifying communities with interest in the work
 - Goal: think collectively about the impact of an interdisciplinary project

The Toolbox Project

- The Toolbox Project focuses on communication about research content within collaborative IDR
- The Leading Idea:
 - You can enhance communication by enhancing mutual understanding
 - You can enhance mutual understanding by structured dialogue about your research worldview
- The Goal: Enhance communication and increase collaborative capacity by reducing the amount "lost in translation" (O'Rourke & Crowley 2013)

The Toolbox Approach

- The Toolbox Project runs dialogue-based workshops in which collaborators:
 - Teach their worldview to others
 - Learn from others about their worldviews

– Two Moving Parts:

- The Instrument: the "Toolbox" is a survey instrument that structures the dialogue by highlighting core aspects of a research worldview
- The Workshop: using the instrument, collaborators compare their different perspectives on scientific research

The Instrument

		_		_		_	
MA	~*	ь	_	a	~	۱.	-
М	eı.	ш	v	u	U.	w	22 7

reund	dology									
Core	Questio	n: W	hat me	thods	do you e	mploy in your discipli	nary research (e.g.			
					nodeling)					
1.	Scientific research must be hypothesis driven.									
	Disagr				Agree					
	1	2	3	4	5	I don't know	N/A			
2.	Qualita	tive s	science	e is as	credible	as quantitative science				
	Disagr	ee			Agree					
	1	2	3	4	5	I don't know	N/A			
3.	modeli	ng re	sults.	ions	of the oce	an should be valued m	ore highly than computational			
	Disagr	ee			Agree					
	1	2	3	4	5	I don't know	N/A			
4.	Scienti	fic re	sults a	re mo	re credib	le if they derive from o	ontrolled experiments.			
	Disagr	ee			Agree	•	-			
	1	2	3	4	5	I don't know	N/A			
5.	Experimental work in marine microbial ecology is too dependent on context to yield general principles. Disagree Agree									
					Agree	T 1 - 1/1	27/4			
	1	2	3	4	5	I don't know	N/A			
6.										
	Disagre	e			Agree					
	1	2	3	4	5	I don't know	N/A			

The Workshop

- This focuses on dialogue about the prompts within eight groups (see the handout)
 - Begin anywhere you wish
 - Follow your interests and insights around the instrument
 —the dialogue is usually facilitated, but not today
 - We don't define or delimit terms—extremity, vagueness, and ambiguity are there for you to negotiate in dialogue
 - We recognize that you may have a complex research perspective—do your best to represent that in your responses
- It ends with a general debrief conversation

A History

- Motivated by graduate students in a team-based IGERT (IGERT) project at U. Idaho
- Led to Eigenbrode et al. (2007) and funding by the NSF (SES-0823058, 2008; SBE-1338614, 2013)
- Over 120 workshops on 3
 continents, multiple publications
 and presentations, and an
 international conference that
 issued in this recently published
 volume:

IRB Approval

- A research project with human subjects: IRB approval from Michigan State University
- Today we are only collecting the instruments—we ask that you submit them to us after the session
- The project is anonymous—we ask that you not put your name on the instrument
- You are not required to participate in this project,
 and can opt out and keep the instrument
- Submitting them indicates your willingness to use the data in presentations and publications

Mapping the Space of Collaboration

- This workshop concerns the extrinsic mode of IDR
- In the same groups, you will devote the first hour of the workshop to:
 - Introductions by research focus
 - A conversation identifying a research project that you could engage in as a group
 - Development of the project with a concept map of the problem that combines your different perspectives
 - Discussion of the problem as you have mapped it, focusing on its broader impacts

Mapping the Space of Collaboration

- The Concept Map
 - Map the spatiotemporal extent of the problem, using a box-and-line system
 - Indicate how your various disciplines will help address the problem:
 - Will they structure the response?
 - Will they generate necessary data?
 - Will they assist in the analysis of the data?

Mapping the Space of Collaboration

- Beyond the Concept Map
 - What other disciplines are needed to address the problem?
 - Beyond scientists, who will be interested in the work?
 How can it be conveyed to them?
 - Could it have policy implications?
 - Are there stakeholder groups who could be affected?
 - What sort of communication plan might aid you in getting the word out to them?

Acknowledgments

- NSF (SES #0823058, SBE-1338614), UI, and MSU for funding
- Co-Pls Stephen Crowley (Boise State), Sanford Eigenbrode (UI), J.D. Wulfhorst (UI), Shannon Donovan (UAA)
- Other research collaborators: Nilsa Bosque-Pérez (UI), Troy Hall (UI), Graham Hubbs (UI), David Stone (Northern Illinois), Lynn Schnapp (UW), Christopher Williams (UI), Kyle Whyte (MSU), Nancy Tuana (Penn State)
- <u>Postdocs and students</u>: Chad Gonnerman, Chris Looney, Liela Rotschy, Zach
 Piso
- <u>Partners</u>: UI Resilience IGERT (NSF), BEACON (NSF), ITHS (NIH), REACCH (USDA), Northwest Climate Science Center (USGS), SCRiM (NSF), GLEON (NSF)
- Members of other participating projects and teams—approximately 1,000 participants in 121 workshops
- <u>Project advisors</u>: Julie Thompson-Klein (Wayne State University), Frank Davis (UC Santa Barbara), Paul Griffiths (University of Sydney)

University of Idaho

References

- Bammer, G. (2013) Disciplining Interdisciplinarity. Canberra: ANU E-Press.
- Brigandt, I. (2010) Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology. *Erkenntnis* 73: 295-311.
- Eigenbrode, S. D., O'Rourke, M., Althoff, D., Goldberg, C., Merrill, K., Morse, W., Nielsen-Pincus, M., Stephens, J., Winowiecki, L., Wulfhorst, J. D., Bosque-Pérez, N. (2007) Employing philosophical dialogue in collaborative science. *BioScience* 57: 55-64.
- Frodeman, R., Holbrook, J. B., Bourexis, P. S., Cook, S. B., Diederik, L., Tankersley, R. A. (2013) Broader impacts 2.0: Seeing—and siezing—the opportunity. *BioScience* 63(3): 153-154.
- Holbrook, J. B. (2013) What is interdisciplinary communication? Reflections on the very idea of disciplinary integration. *Synthese* 190(11): 1865-1879.
- Klein, J. T. (2010) A taxonomy of interdisciplinarity. In R. Frodeman, J. T. Klein, and C. Mitcham (eds.), *The Oxford Handbook of Interdisciplinarity*. Oxford: Oxford University Press.
- Klein, J. T. (2011) Research integration: A comparative knowledge base. In A. F. Repko, W. H. Newell, and R. Szostak (eds.,) *Case Studies in Interdisciplinary Research*. Thousand Oaks, CA: Sage Publications.
- Knorr Cetina, K. (2000) Epistemic Cultures: How the Sciences Make Knowledge. Cambridge: Harvard University Press.
- Morse, W. C., Nielsen-Pincus, M., Force, J. E., Wulfhorst, J. D. (2007) Bridges and barriers to developing and conducting interdisciplinary graduate-student team research. *Ecology and Society* 12(2): 8. [online] URL: http://www.ecologyandsociety.org/vol12/iss2/art8/
- National Academy of Sciences, Committee on Facilitating Interdisciplinary Research and Committee on Science Engineering and Public Policy (NAS). (2004) *Facilitating Interdisciplinary Research*. Washington, DC: National Academies Press.
- O'Rourke, M., Crowley, S. (2013) Philosophical intervention and cross-disciplinary science: The story of the Toolbox Project. *Synthese* 190(11): 1937-1954.
- Sarewitz, D. (2013) Science must be seen to bridge the political divide. *Nature* 493, 7 (03 January 2013).
- Thagard, P. (1997) Collaborative knowledge. Nous 31(2): 242-261.
- Turner, S. (2000) What are disciplines? And how is interdisciplinarity different? In P. Weingart and N. Stehr (eds.), *Practising Interdisciplinarity*. Toronto: University of Toronto Press.
- Voosen, P. (2013) A science leaves the solo author behind. The Chronicle of Higher Education (11 November 2013). Web. 1 Feb. 2014.