For better experience, JavaScript is recommended for this website. Enable JavaScript in your browser
Menu
Courtesy of Caltech Information Science and Technology Initiative – Wierman Cray 2 Supercomputer

Grants List

Grants

Courtesy of Mak Saito - idealized representation of a marine algal cell acquiring the cobalt-containing vitamin B12 using a  recently discovered protein named CBA1

Woods Hole Oceanographic Institution

Metalloenzymes as indicators of ocean biogeochemical processes

To enable a greater understanding of trace metals and metalloenzymes in oceanic biogeochemical cycles. By combining cutting-edge proteomic tools with trace metal analysis techniques, this project aims to advance the understanding of biogeochemical cycles by identifying and quantifying the abundance of key microbial metalloenzymes in oxygen minimum zones concurrently with trace metal analyses.

Title: Metalloenzymes as indicators of ocean biogeochemical processes
Date Awarded: Nov 2010
Amount: $1,125,081
Term: 36 months
Grant ID: GBMF2724
Funding Area: Science, Marine Microbiology Initiative

News

Abstract:

Metalloenzymes catalyze key biogeochemical reactions that allow life to sustain itself on Earth. In the marine environment, microbial communities produce the metalloenzymes that influence carbon cycling, nitrogen cycling, and organic matter degradation, for example. Yet the oceans are extraordinarily depleted in many biologically important metals: iron, cobalt, nickel, copper, and zinc are found at nanomolar or lower concentrations in surface waters. Due to the analytical challenges associated with these low abundances, our understanding of how the scarcity of metals affects metalloenzyme biosynthesis and the corresponding biogeochemical cycles is in its infancy. Important questions have yet to be answered: what are the distributions of key metalloenzymes and their microbial hosts? How are metalloenzyme distributions governed by metal and oxygen distributions? How do those abundances affect biogeochemical processes such as primary production, denitrification, and carbon remineralization? How will climate change affect many biogeochemical processes catalyzed by metalloenzymes?

In this project we are applying cutting-edge proteomic technology towards experiments on biogeochemically relevant microbial isolates under varying environmental conditions and the development of a quantitative field metalloenzyme capability to explore the distribution of these proteins and their relationships to biological and chemical features.

Read more:

Alysia D. Cox and Mak A. Saito. Proteomic responses of oceanic  Synechococcus WH8102 to phosphate and zinc scarcity and cadmium additions. Frontiers in Microbiological Chemistry. doi: 10.3389/fmicb.2013.00387

Abigail E. Noble, Dawn M. Moran, Andrew E. Allen, and Mak A. Saito. Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron. Frontiers in Microbiological Chemistry. doi: 10.3389/fchem.2013.00025

Erin M. Bertrand, Dawn M. Moran, Matthew R. McIlvin, Jeffrey M. Hoffman, Andrew E. Allen, and Mak A. Saito. Methionine synthase interreplacement in diatom cultures and communities and the persistence of B12 use by eukaryotic phytoplankton.  58:4. 1431-1450. Limnology and Oceanography. doi:10.4319/lo.2013.58.4.143

Saito, M.A., A.E. Noble, A. Tagliabue, T. J. Goepfert, C.H. Lamborg, W.J. Jenkins. 2013. A Large Hydrothermal Iron Plume in the South Atlantic and Implications for Global Iron Cycling. Nature Geosciences. doi: 10.1038/ngeo1893

J. Daphne Aguirre, Hillary M. Clark, Matthew McIlvin, Christine Vazquez, Shaina L. Palmere, Dennis Grab, J. Seshu, Mak A. Saito and Valeria C. Culotta. 2013. A Manganese-Rich Environment Supports Superoxide Dismutase Activity in the Lyme Disease Pathogen, Borrelia burgdorferi. Journal of Biological Chemistry. doi: 10.1074/jbc.M112.433540

Robbins, L.J., S.V. Lalonde, M.A. Saito, N.J. Planavsky, A.M. Mloszewska, E. Pecoits, C. Scott, C.L. Dupont, A. Kappler, and K.O. Konhauser. 2013. Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution. Geobiology. doi: 10.1111/gbi.12036

Moore, C.M., Mills, M.M., Arrigo, K.R., Berman-Frank, I., Bopp, L., Boyd,P.W., Galbraith, E.D., Geider, R.J., Guieu, C., Jaccard, S.L., Jickells, T.D., LaRoche, J., Lenton, T., Mahowald, N.M., Marañón, E., Marinov, I., Moore,J.K., Nakatsuka, T., Oschlies, A., Saito, M.A., Thingstad, T.F., Tsuda, A., and Ulloa, O. 2013. Processes and patterns of Ocean Nutrient Limitation. Nature Geosciences. 6 702-710. doi:10.1038/ngeo1765

Mackey, KRM, K Caldiera, A Grossman, D Moran, M McIlvin, A Paytan, & M Saito. Effect of temperature on photosynthesis and growth in diverse marine Synechococcus strains. Plant Physiology. doi.1104/pp.113.221937

Bertrand EM, Allen AE, Dupont CL, Norden-Krichmar T, Bai J, Saito MA. 2012. Impact of Cobalamin Starvation on Diatom Molecular Physiology and the Identification of a Novel Cobalamin Acquisition Protein. Proc. Nat. Acad. Sci. doi: 10.1073/pnas.1201731109

Katherine RM Mackey, Kathryn Roberts, Michael W Lomas, Mak A Saito, Anton F Post, Adina Paytan. 2012. Variable solubility and ecological impact of atmospheric phosphorus deposition. Environ. Sci. Technol. doi:10.1021/es3007996

Mak A. Saito. 2012. The Rise of Oxygen and Aerobic Biochemistry. Structure. 20:1. 1–2. http://dx.doi.org/10.1016/j.str.2011.12.006

Noble, A.E., C.H. Lamborg,  D. Ohnemus,  P.J. Lam, K. T.J. Goepfert, C.I. Measures, C.H. Frame, K.L. Casciotti, G.R.DiTullio, J. Jennings, and M.A. Saito. 2012. Basin-scale plumes of cobalt, iron, and manganese emanating from the Benguela-Angola front in the South Atlantic Ocean. 57:4. 989-1010. Limnology and Oceanography. doi:10.4319/lo.2012.57.4.0989

Sonya T. Dyhrman, Bethany D. Jenkins, Tatiana A. Rynearson, Mak A. Saito, Melissa L. Mercier, Harriet Alexander, LeAnn P. Whitney, Andrea Drzewianowski, Vladimir V. Bulygin, Erin M. Bertrand, Zhijin Wu, Claudia Benitez-Nelson, Abigail Heithoff. 2012. Coordination in the transcriptome and proteome of the diatom Thalassiosira pseudonana reveals a diverse phosphorus stress response. PLoS One. 7:3. e33768. DOI: 10.1371/journal.pone.0033768

Saito, M.A., Vladimir Bulygin, Dawn Moran, Craig Taylor, and Christopher Scholin. 2011. Examination of Microbial Proteome Preservation Techniques Applicable to Autonomous Environmental Sample Collection. Front. Microbio. 2:215. doi: 10.3389/fmicb.2011.00215

 

Products:

Living Lab Live radio interview, National Public Radio WCAI, June 3, 2013

Lyme disease metalloprotein (lack of iron requirement) press release

Oceanus article on Diazotroph Proteomic Research

Oceanus article on Vitamin B12 Claw and Proteomics

Return to the Main Marine Microbiology Initiative Page